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Abstract

In a recent paper, Sprenger (2019) advances what he calls a “suppo-
sitional” answer to the question of why a Bayesian agent’s degrees of
belief should align with the probabilities found in statistical models.
We show that Sprenger’s account trades on an ambiguity between hy-
pothetical and subjunctive suppositions and cannot succeed once we
distinguish between the two.

1 Introduction

In a recent paper, Sprenger (2019) advances what he calls a “suppositional”
answer to the question of why a Bayesian agent’s degrees of belief should align
with the probabilities found in statistical models. More precisely, he holds
that we should interpret the probability density functions found in statistical
models as providing us with insight into how the world would be on the
supposition of the hypothesis, and that this suppositional reading reveals why
a Bayesian should assign degrees of belief in accordance with the probabilities
found in the model. Sprenger’s account trades on an ambiguity between
hypothetical and subjunctive suppositions, however, and thus cannot succeed
once we distinguish between the two.

We begin by briefly outlining Sprenger’s suppositional account and the
problem it is designed to resolve. The second part of the paper distinguishes
between the two different kinds of supposition, while the third argues that
Sprenger’s account fails once it’s recognized that the two kinds of supposition



come apart. Section four considers a pair of possible rejoinders, and we end
by discussing what hangs on the success of the view.

2 Sprenger’s suppositional account

Consider a coin and the problem of determining whether or not it is “fair.”
To address this problem, the statistician begins by setting up a “statistical
model,” essentially a specification of the probabilistic relationship between
various hypotheses and (possible) sets of experimental results. Formally,
in the (Bayesian) coin-flipping case, we can think of this statistical model
as consisting of the following. (1) A set, M, consisting of x hypotheses
of the form H, : p(heads) = p and a o-algebra, X, over that set. (2) A
prior probability distribution on the hypothesis space: p : ¥ — [0,1]. (3)
A sample space: S = {heads,tails}" where n is the number of flips. The
evidence, F/, then consists of a particular realization of this sample space,
i.e., By =k heads & n — k tails. (4) A probability density or mass function
relating each hypothesis to (at least) the evidence that is actually observed:
P, (Br) = (3) () (1 — p) ")

Much has been written about the first three elements of the statistical
model and the various challenges that Bayesians face in (properly) specifying
these elements. Sprenger (2019), by contrast, focuses on (4). As he notes, the
use of Bayesian inference (at least as traditionally presented) requires treating
the realization of the probability density function pg,(E)) as equivalent to
the conditional degree of belief p(Ex|H,). The “main question” (Sprenger
2019, 323) that Sprenger aims to answer is what justifies treating these two
quantities as equivalent.

To give some teeth to this question, consider the fact that our statistical
model is heavily idealized. We've (implicitly) assumed that the flips are
independent and identically distributed, and while this assumption may be
a good approximation, it’s unlikely to hold exactly in real life. As Sprenger
argues, more complex examples of statistical models—such as those found in
climate science—contain even more unrealistic idealizations. In these cases,
therefore, we can’t justify the equivalence of pg, () and p(Ey|H,) on the
grounds that the statistical model accurately represents the world—after all,
we know it doesn’t.

Sprenger’s solution is to follow Ramsey and hold that the justification
of the equivalence rests on suppositional reasoning: “we evaluate the con-



ditional degree of belief p(E|H) by supposing the truth of the conditioning
proposition H and by assessing the plausibility of E given this supposition”
(Sprenger 2019, 324). Connecting p(E|H) to suppositional reasoning in this
way allows Sprenger to run the following argument. Consider the set of
worlds W “where the behavior of S is governed by the probability law H”
(Sprenger 2019, 325). In each of these worlds, the objective chance of E is
given by pg(F). By the Principal Principle, we should assign degrees of belief
that accord with the objective chances, meaning that if we’ve supposed that
we're in W, our degrees of belief should align with the probabilities given by
the model: pw(FE) = py(E). Finally, given the suppositional analysis, the
conditional degree of belief p(E|H) should be equivalent to the probability
that we assign on the supposition that we are in W, or: p(E|H) = pw(E).
The result is the desired equivalence between p(E|H) and py(E).

3 Two kinds of supposition

Since Adams (1975), the literature on supposition has recognized two distinct
kinds of supposition: hypothetical and subjunctive. The difference is neatly
brought out by Adams’ own example:

Hypothetical: If Oswald didn’t kill Kennedy, someone else did.

Subjunctive: If Oswald hadn’t killed Kennedy, someone else would
have.

In the former case, we suppose the proposition [[Oswald didn’t kill Kennedy]]
by adding it to the stock of things that we already know. Given that we know
that Kennedy was in fact shot, it follows that on this hypothetical someone
else must have shot him. In the latter case, by contrast, we're supposing that
[[Oswald didn’t kill Kennedy]] in a manner that doesn’t hold fixed the stock of
things that we already know. In particular, though we know that [[Someone
killed Kennedy]], this proposition is dropped from our stock of knowledge
when we suppose in a subjunctive manner. There’s much more to say here;
the lesson is simply that subjunctive supposition allows for counterfactual
possibilities such as those in which Kennedy was not in fact shot.

Just as the antecedent of a conditional can be supposed either hypothet-
ically or subjunctively, so too can the proposition that we condition on in a
conditional probability. On a standard interpretation, p(A|B) is the prob-
ability of A on the hypothetical supposition of B—that is, in the situation
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where we add B to our stock of knowledge. By contrast, we’ll follow Schwarz
(2018) in using p(A||B) to indicate the probability of A on the subjunctive
supposition of B, which allows for B overwrite our previous knowledge.! As
we would expect, these two kinds of conditioning can and will come apart.
Plausibly, the probability that someone else killed Kennedy given the hypo-
thetical assumption that Oswald didn’t is quite high, while the probability
that someone else would have on the subjunctive supposition that Oswald
didn’t is at least substantially lower.

4 The central problem

Sprenger is explicit that his account allows the supposition of H to “overrule
conflicting information” (Sprenger 2019, 325), meaning that H is (at least
sometimes) supposed in a subjunctive manner.> The problem for Sprenger’s
analysis is that once we account for this fact, his argument no longer shows
what he intends it to. If the type of supposition employed is subjunc-
tive, what his argument shows is that py(F) is equivalent to p(F||H); since
p(E||H) is not generally equivalent to p(F|H ), the argument no longer war-
rants the equivalence between the probability density or mass function and
our degrees of belief.

To see how p(F|H) and p(FE||H) can come apart in a manner that is rele-
vant to Sprenger’s analysis, consider again the famous example from Adams.
Let H be [[Oswald didn’t kill Kennedy]] and let E be the proposition [[The
Warren Commission concluded that Oswald didn’t kill Kennedy]]. Suppose
that our agent does not yet know the content of the Warren Report but nev-
ertheless has relatively high priors that Oswald killed Kennedy. Plausibly,
they should assign a relatively high confidence to p(E|H): if Oswald didn’t
kill Kennedy, the report is relatively likely to say so—certainly much more
likely to say so than if he did. When we suppose H subjunctively, by contrast,
we get the opposite result. Assuming that Kennedy was not assassinated in
the (nearest) worlds where Oswald didn’t kill him (or that the alternative
assassination did not prompt the Warren Commission’s investigation), the

'The most well-developed use of subjunctive conditional probabilities is in “interven-
tionist” accounts of causation, where such probabilities are used to evaluate the probability
of an outcome if “we” intervened to change the world in a specific way. See Pearl (2009)
and Spirtes, Glymour, and Scheines (2000).

2Indeed, Sprenger (2019, 325) suggests that this is the key innovation of his account.



probability of £ in these worlds—that is, p(F||H)—is quite low. The upshot
is that we’re not justified in equating the probability that some evidence has
on the subjunctive supposition of H with its probability given H understood
in the traditional (hypothetical) manner.

This is not an idle problem, and does not depend on the qualitative char-
acter of this example. So consider studies in which climate scientists investi-
gate whether and to what degree humans are responsible for climate change.
The hypotheses in these studies are statistical; many of these studies are
essentially regressions, and Bayesian attribution studies typically involve de-
termining which value for anthropogenic temperature change has the highest
posterior probability (see, e.g., Ribes, Qasmi, and Gillett 2021).

On the hypothetical assumption that humans are not responsible for cli-
mate change, we should expect that some other factor is. So, for example,
we would expect the data to exhibit patterns consistent with a massive in-
crease in solar energy output. Call these patterns £ and the hypothesis that
humans are not responsible for climate change Hy; the claim is that p(E|Hy)
should be relatively high. But again, if we have relatively high priors that
humans are responsible for climate change, the subjunctive supposition that
we're not yields the opposite conclusion. On the subjunctive supposition
that humans are not responsible for climate change, there would be no cli-
mate change and so we would not expect to discover patterns that indicate
a massive increase in solar energy output; p(E||Hy) should be quite low.

As these examples illustrate, hypothetical and subjunctive suppositions
differ in systematic ways. These systematic differences block Sprenger’s pro-
posed justification for equating p(E|H) and py(FE): his argument only suc-
ceeds if p(E|H) and p(E||H) are generally equivalent, and we’ve just seen
that they aren’t.?

3Notice: this problem doesn’t (obviously) affect other uses of subjunctive supposition in
confirmation theory. Garber (1983), for instance, appeals to the change in the probability
of H upon learning E in the counterfactual scenario where F isn’t known to solve the
“ahistorical” problem of old evidence. Garber’s position doesn’t require equating p(A|B)
with p(A||B)—in fact, it only makes sense because these two quantities come apart, as
Garber (1983, 103) explicitly notes—and so isn’t undermined by the argument just given.



5 Potential rejoinders

A defender of Sprenger has two potential rejoinders here that are worth
addressing.

First, the defender might respond by retreating to a purely hypothetical
account: while Sprenger has indicated that the supposition should be sub-
junctive by allowing it to overrule known information, perhaps the account
would be better without this commitment. Indeed, dropping the subjunctive
element of the account would allow the original argument to go through.
Unfortunately, however, the resulting account no longer has the generality
that Sprenger aims for. As noted above, many—some would say all (Box
1976)—of the models used in statistical reasoning are idealized—that is, we
know that some of their assumptions are strictly-speaking false. So we cannot
hypothetically suppose that these assumptions describe the objective proba-
bilities of the world without endorsing a contradiction from which everything
will follow. Since Sprenger explicitly aims to give an account of how statisti-
cal modeling functions in “highly idealized” cases (Sprenger 2019, 321), this
hypothetical version of the account cannot be said to succeed either.

Second, the defender could respond that in Sprenger’s discussion, p(F|H)
should actually be interpreted subjunctively—that is, as p(E||H).* Indeed,
there are a number of places in his paper where Sprenger suggests something
along these lines, by saying (for example) that his interpretation of degrees of
belief is “genuinely counterfactual” (Sprenger 2019, 325). In the latter half of
the paper in particular, Sprenger retreats from equating py (E) with p(E|H)
to equating py(FE) with py(E|H), “[tJhe degree of belief in the truth of H
that we would have if we had supposed that the target system is fully and
correctly described by one of the hypotheses in M” (Sprenger 2019, 330)—a
retreat that suggests that his goal is ultimately the equation of py(FE) with
a subjunctively supposed quantity.

It seems unlikely that this re-interpretation is accurate: Sprenger is ex-
plicit that his goal is to connect py(F) with the conditional probabilities that
we actually have—i.e., with p(E|H). And it’s easy to see why: what we want
is an account that tells us whether, why, or when we’re justified in taking the
probabilities generated using idealized statistical models to constrain our own
beliefs. This is the intuitive appeal of Sprenger’s “main question.” While
the imagined retreat would avoid the problem raised in the previous section,

4My thanks to an anonymous reviewer for pressing me on this point.



therefore, the cost is that the suppositional account now tells us only that we
should equate the probabilities generated using idealized statistical models
with the degrees of belief that we would have in certain non-actual worlds.
And it’s not clear why that’s relevant to the confirmation of hypotheses in
this world.

6 What now?

What are the stakes for the success of the suppositional account? That
depends on what we take the goal of the suppositional account to be. On
the one hand, if the goal is to show why we should allow the probability
density functions delivered by statistical models to constrain our degrees of
belief—and if Sprenger is right that other attempts to answer this question
also fail-—the failure of the suppositional account is a serious problem for
(Bayesian) philosophy of statistics. If Bayesian statistics doesn’t provide us
with at least rough constraints on our degrees of belief, it’s not clear what
it’s doing.

On the other hand, there are reasons to think that Sprenger’s goal is in
fact more modest. As noted above, Sprenger ultimately suggests that even
though the suppositional account forges a connection between p(E|H) and
pu(FE), it’s rarely a good idea to “naively” calibrate our degrees of belief to
the probabilities generated by the statistics (Sprenger 2019, 332). Instead,
how these probabilities should constrain our degrees of belief depends on facts
about the relationship between the particular model and its target. If this
nuanced reading is right, the stakes appear much lower. We've shown that
the argument that Sprenger gives for the equation of p(E|H) and pg(F)
cannot succeed, but it’s not clear why he needs this argument—after all,
what’s really doing the work are local facts, not the appeal to suppositional
reasoning that we’ve undermined in this paper.
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